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Abstract: 
Achieving good performance on high-end computing systems is growing ever more challenging 
due to enormous scale, increasing architectural complexity, and increasing application complex-
ity. To address these challenges in DOE’s SciDAC-2 program, the Performance Engineering Re-
search Institute (PERI) has embarked on an ambitious research plan encompassing performance 
modeling and prediction, automatic performance optimization and performance engineering of 
high profile applications. The principal new component is a research activity in automatic tuning 
software, which is spurred by the strong user preference for automatic tools. 

1. Introduction 
Understanding and enhancing the performance of large-scale scientific programs is a crucial 
component of the high-performance computing world.  This is due not only to the increasing 
processor count, architectural complexity and application complexity that we face, but also due 
to the sheer cost of these systems.  A quick calculation shows that if one can increase by just 
30% the performance of two of the major SciDAC applications codes (which together use say 
10% of the NERSC and ORNL high-end systems over three years), this represents a savings of 
some $6 million. 

Within just five years, systems with one million processors are expected, which poses a chal-
lenge not only to application developers but also to those engaged in performance tuning. Earlier 
research and development by us and others in the performance research area focused on the 
memory wall – the rising disparity between processor speed and memory latency. Now the 
emerging multi-core commodity microprocessor designs, with many processors on a single chip 
and large shared caches, create even greater penalties for off-chip memory accesses and further 
increase optimization complexity. With the release of systems such as the Cray X1, custom vec-
tor processing systems have re-emerged in U.S. markets. Other emerging designs include single-
instruction multiple-data (SIMD) extensions, field-programmable gate arrays (FPGAs), graphics 
processors and the Sony-Toshiba-IBM Cell processor. Understanding the performance implica-
tions for such diverse architectures is a daunting task. 

In concert with the growing scale and complexity of systems is the growing scale and complexity 
of the scientific applications themselves.  Applications are increasingly multilingual, with source 
code and libraries created using a blend of Fortran 77, Fortran-90, C, C++, Java, and even inter-
preted languages such as Python.   Large applications typically have rather complex build proc-
esses, involving code preprocessors, macros and make files.  Effective performance analysis 
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methodologies must deal seamlessly with such structures.  Applications can be large, often ex-
ceeding one million lines of code.  Optimizations may be required at many locations in the code, 
and seeming local changes can affect global data structures.  Applications are often componen-
tized and performance can depend significantly on the context in which the components are used.  
Finally, applications increasingly involve advanced features such as adaptive mesh refinement, 
data intensive operations and multi-scale, multi-physics and multi-method computations. 

The PERI project emphasizes three aspects of performance tuning for high-end systems and the 
complex SciDAC applications that run on them: (1) performance modeling of applications and 
systems; (2) automatic performance tuning; and (3) application engagement and tuning. Figure 1 
shows the interplay of our activities, which are the focus of this paper.  The next section dis-
cusses the modeling activities we are undertaking both to understand the performance of applica-
tions better as well as to be able to determine what are reasonable bounds on expected perform-
ance.  Section 3 presents the PERI vision for how we are creating an automatic performance tun-
ing capability, which ideally will alleviate scientific programmers of this burden.  Automating 
performance tuning is a long-term research project, and the SciDAC program has scientific ob-
jectives that cannot await its outcome.  Thus, as Section 4 discusses, we are engaging with DOE 
computational scientists to address today’s most pressing performance problems.  Finally, Sec-
tion 5 summarizes the current state of the PERI SciDAC-2 project.  This effort is just beginning, 
but we have already made substantial progress both in forming our team as well as striving to-
wards meeting our goals, both the near-term goals of helping DOE successfully transition into 
the Petascale era and our long-term research goal of automating the process of performance tun-
ing. 

2. Performance Modeling and Prediction 
The goal of performance modeling is to understand the performance of an application on a com-
puter system via measurement and analysis. This information can be used for a variety of tasks: 
evaluating architectural tradeoffs early in the system design cycle, validating performance of a 
new system installation, guiding algorithm choice when developing a new application, improv-
ing optimization of applications on specific platforms, and guiding the application of techniques 
for automated tuning and optimization [Bailey2005]. Modeling is now an integral part of many 
high-end system procurements [Hoisie2000], thus making performance research useful beyond 
the confines of performance tuning.  For performance engineering, modeling analyses (when 
coupled with empirical data) can inform us when tuning is needed, and just as importantly, when 
we are done. Naturally, if they are to support automatic performance tuning, then the models 
themselves must be automatically generated.  The remainder of this section discusses the per-
formance modeling portion of the PERI project. 
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Figure 1: The three components of PERI 

 

Traditional performance modeling and prediction has been done via some combination of three 
methods: (1) analytical modeling; (2) statistical modeling derived from measurement; and (3) 
simulation. In the earlier SciDAC-1 Performance Evaluation Research Center (PERC), research-
ers developed a semi-automatic yet accurate methodology based on application signatures, ma-
chine profiles and convolutions.  These methodologies allow us to predict performance to within 
reasonable tolerances for an important set of applications on traditional clusters of SMPs for spe-
cific inputs and processor counts.   

PERI is extending these techniques not only to account for the effects of emerging architectures 
but also to model scaling of input and processor counts.   It has been shown that modeling the 
response of a system’s memory hierarchy to an application’s workload is crucial for accurately 
predicting its performance on today’s systems with deep their memory hierarchies. The current 
state-of-the-art works well for weak scaling (i.e., increasing the processor count proportionally 
with input).  PERI is developing advanced schemes for modeling application performance, such 
as by using neural networks [Ipek2005]. We are also exploring variations of existing techniques 
and parameterized statistical models built from empirical observations to predict application 
scaling. We are also pursuing methods for automated extrapolation of scaling models, as a func-
tion of increasing processor count, while holding the input constant [Weinberg2005].  One of our 
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goals is to provide the ability to reliably forecast the performance of a code on a machine size 
that has not yet been built. 

Within PERI we are also extending our framework to model communication performance as a 
function of the type, size, and frequency of application messages, and the characteristics of the 
interconnect. Several parallel communication models have been developed that predict perform-
ance of message-passing operations based on system parameters [Hockney1994; Culler1993; Al-
exandrov1995; Keilmann2000]. Assessing the parameters for these models within local area 
networks is relatively straightforward and the methods to approximate them have already been 
established and are well understood [Keilmann2000, Culler1996].  Our models, which are simi-
lar to PlogP, capture the effects of network bandwidth and latency; however, a more robust 
model must also account for noise, contention and concurrency limits. We are developing per-
formance models directly from observed characteristics of applications on existing architectures. 
Predictions from such models can serve as the basis to optimize collective MPI operations [Pje-
sivac-Grbovic2005], and permit us to predict network performance in a very general way.  This 
work will require us to develop a new open-source network simulator to analyze communication 
performance. 

Finally, we will reduce the time needed to develop models, since automated tuning requires on-
the-fly model modification. For example, a compiler, or application, may propose a code change 
in response to a performance observation and need an immediate forecast of the performance 
impact of the change.  Dynamic tracing, the foundation of current modeling methods, requires 
running existing codes and can be quite time consuming.  Static analysis of binary executables 
can make trace acquisition much faster by limiting it to only those features that are not known 
before execution.  User annotations [Alam2006a] can broaden the reach of modeling by specify-
ing at a high level the expected characteristics of code fragments.  Application phase modeling 
can reduce the amount of data required to form models [Gao2005b].  We are exploring less ex-
pensive techniques to identify dynamic phases through statistical sampling and time-series clus-
ter analysis.  For on-the-fly observation, we are using DynInst to attach to a running application, 
slow it down momentarily to measure something, then detach [Buck2000].  In PERI we will ad-
vance automated, rapid, machine-independent model formation to push the efficacy of perform-
ance modeling down into lower levels of the application and architecture lifecycle. 

We conclude the discussion of modeling with an example drawn from our collaboration with the 
S3D [Echekki2003] code team at Sandia National Laboratory.  Most of the energy consumed by 
mankind is derived from combustion, and S3D was developed to help scientists better model and 
understand its fundamental properties. Figure 2 depicts the heat release rate (red) and progress 
variable (purple) of a  turbulent lean methane-air Bunsen flame.  The volume rendering was per-
formed by Hiroshi Akiba and Kwan-Liu Ma of U.C. Davis and the SciDAC Ultrascale Vizuali-
zation Institute, and by Ramanan Sankaran, Evatt R. Hawkes and Jacqueline H. Chen of Sandia 
National Laboratory. 
 

 - 4 of 14 - 



 
Figure 2 Heat release and progress variable from an S3D flame – ROTATE!!! 
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Figure 3 is a Kiviat diagram showing predicted performance improvements relative to  the IBM 
Power4 architecture (normalized to 1) for a 2X improvement in dimensions  of CPU clockspeed, 
L1 bandwidth, L2 bandwidth (inclusive of L1), L3 bandwidth (inclusive of L1 and L2), and main 
memory bandwidth.  Note that S3D has some floating-point limited code, so there is some im-
provement to be had by doubling the clock,  and hence the floating-point issue rate.  But, as is 
usual for many of our models of scientific codes, there appears to be  more to be gained by dou-
bling bandwidth to lower levels of the memory hierarchy. From a performance tuning perspec-
tive, it appears that optimizations affecting data layout and working set size, to improve cache 
miss rates would yield the most significant improvements. 
 

S3D Sensitivity Study
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Figure 3:  Kiviat diagram of Power4 system options 

3. Automatic Performance Tuning 
In discussions with application scientists it is clear that users want to focus on their science, and 
not be burdened with optimizing their code’s performance. Thus, the ideal performance tool ana-
lyzes and optimizes performance without human intervention, a long-term vision that we term 
automatic performance tuning. This vision encompasses tools that analyze a scientific applica-
tion, both as source code and during execution, generate a space of tuning options, and search for 
a near-optimal performance solution. There are numerous daunting challenges to realizing the 
vision, including enhancement of automatic code manipulation tools, automatic run-time pa-
rameter selection, automatic communication optimization, and intelligent heuristics to control the 
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combinatorial explosion of tuning possibilities. On the other hand, we are encouraged by recent 
successful results such as ATLAS, which has automatically tuned components of the LAPACK 
linear algebra library [Whaley2001]. We are also studying techniques used in the highly success-
ful FFTW library [Frigo1998] and several other related projects [Bilmes1997, Vuduc2005, 
Chen2005b].  The PERI strategy for automatic performance tuning is presented in greater detail 
in this section of this paper. 

Figure 4 illustrates the automated performance tuning process and integration we are pursuing in 
PERI.  We are attempting to integrate performance measurement and modeling techniques with 
code transformations to create an automated tuning process for optimizing complex codes on 
large-scale architectures. The result will be an integrated compile-time and run-time optimization 
methodology that can reduce dependence on human experts and automate key aspects of code 
optimization.  The color and shape code in Figure 2 indicates the processes associated with the 
automation of empirical tuning on either libraries or whole applications.  Blue rectangles indicate 
specific tools or parts of tools to support automated empirical tuning.  Yellow ovals indicate ac-
tivities that are part of a code that is using automatic tuning at run-time.  Green hexagons indi-
cate information may be supplied to guide the optimization selection during empirical tuning. 
The large green hexagon lists the type of information that may be used. 

As shown in Figure 4, the main input to the automatic tuning process is the application source 
code. In addition, there may also be external code (e.g., libraries), ancillary information such as 
performance models or annotations, sample input data and historical data from previous execu-
tions and analyses. With these inputs, we anticipate that the automatic tuning process involves 
the following steps: 

• Triage. This step involves performance measurement, analysis and modeling to determine 
whether an application has opportunities for optimization. 

• Semantic analysis. This step involves analysis of program semantics to support safe trans-
formation of the source code, including traditional compiler analyses to determine data and 
control dependencies.  Here we can also exploit semantic information provided by the user. 

• Transformation. Transformations include traditional optimizations such as loop optimizations 
and in-lining, as well as more aggressive data structure reorganizations and domain-specific 
optimizations. Tiling transformations may be parameterized to allow for input size and ma-
chine characteristic tuning. Unlike traditional compiler transformations, we allow user input. 

• Code generation. The code generation phase produces a set of possible implementations to be 
considered. Code generation may either come from general transformations to source code in 
an application or from a domain-specific tool that produces a set of implementations for a 
given computation, as is the case with the ATLAS BLAS generator. 

• Offline search. This phase evaluates the generated code to select the “best” version. Offline 
search entails running the generated code and searching for the best-performing implementa-
tion. The search process may be constrained by guidance from a performance model or user 
input. By viewing these constraints as guidance, we allow the extremes of pure search-based, 
model-based, or user-directed, as well as arbitrary combinations. 

• Application assembly. At this point, the components of optimized code are integrated to pro-
duce an executable code, including possible instrumentation and support for dynamic tuning. 

• Training runs. Training runs involve a separate execution step designed mainly to produce 
performance data for feedback into the optimization process. This step may be used prior to a 
large run to have the code well-tuned for a particular input set. 
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• Online adaptation. Finally, optimizations may occur during production runs, especially for 
problems or machines whose optimal configuration changes during the execution. 

Automatic tuning of a particular application need not involve all of these steps.  Furthermore, 
there will likely not be a single automatic tuning tool, but rather of suite of interacting tools 
which are themselves research projects. 

A key part of the automatic tuning process is the maintenance of a persistent store of perform-
ance information from both training and production runs.  Of particular concern  are changes in 
the behavior of production codes over time.  Such changes can be symptomatic of changes in the 
hardware, of the versions and configuration of system software, of changes to the application, or 
of changes to problems being solved.  Regardless of the source, such changes require analysis 
and remediation.  The problem of maintaining persistent performance data is recognized across 
the HPC community.  PERI therefore formed a Performance Database Working Group, which 
involves PERI researchers as well as colleagues at the University of Oregon, Portland State Uni-
versity, and Texas A&M University. The group has developed technology for storing perform-
ance data collected by a number of performance measurement and analysis tools, including 
TAU, PerfTrack, Prophesy, and SvPablo. The PERI Database system provides web interfaces 
that link to  the performance data and analysis tools in each tool's home database. 
 
While automatic tuning is PERI’s long-term research goal, several of PERI’s research groups 
have already applied their autotuning frameworks to ”doitgen”, a core computational kernel in 
MADNESS, which computes the reduction sum of a 3-d matrix multiplied by a 2-d matrix.  We 
experimented with a range of transformations including array contraction, loop unrolling, and a 
customized code generator for matrix-vector multiplication.  Figure 5 shows the results on an 
Opteron.  The automatically tuned code fragment is 1.5 times faster than the hand-tuned Fortran 
version.  We also experimented with compiler-generated code for use of Intel's SSE-3 SIMD 
compute engine, achieving up to a 1.23 fold speedup over the original, hand-tuned code.   
 
The above experiment also illustrated the importance of tuning the code in the context of the 
overall application and pointed out the limitations of tuning isolated kernels.  When we put the 
auto-tuned code back into the overall MADNESS application, the entire application ran slightly 
slower than before.  The reason was that we had optimized only one case and our optimizations 
had slowed down others.  After discussion with the code developer, we believe we now know 
how to proceed to achieve an overall improvement in the entire application’s performance. 
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Figure 4: The PERI automatic tuning workflow 
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Figure 5: Early automatic tuning result for the doitgen kernel of MADNESS 
 

4. Application Engagement 
 
The key long-term research objective of PERI is to automate as much of the performance tuning 
process as possible.  Ideally in five years we will produce a prototype of the kind of system that 
will free scientific programmers from the burden of tuning their codes, especially when simply 
porting from one system to another.  While this may offer today’s scientific programmers hope 
for a brighter future, it does little to help with the immediate problems they face as they try ready 
their codes for Petascale.  PERI has therefore created a third activity that we are calling applica-
tion engagement wherein PERI researchers will bring their tools and skills to bear in order both 
to help DOE meet its performance objectives as well as to ground our own research in practical 
experience.  This section discusses the current status of our application engagement activities. 
 
PERI has a two-pronged application engagement strategy.  Our first strategy is establishing long 
term liaison relationships with many of the application teams.  PERI liaisons who work with ap-
plication teams without significant, immediate performance optimization needs provide these 
application teams with advice on how to collect performance data and track performance evolu-
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tion, and ensure that PERI becomes aware of any changes in these needs.  For application teams 
with immediate performance needs, the PERI liaison works actively with the team to help them 
meet their needs, utilizing other PERI personnel as needed. The status of a PERI liaison activity, 
passive or active, changes over time as the performance needs of the application teams change. 
As of June 2007, PERI is working actively with six application teams and passively with ten oth-
ers.  The nature of each interaction is specific to each application team. 
 
The other primary PERI application engagement strategy is tiger teams. A tiger team works di-
rectly with application teams with immediate, high-profile performance requirements. Our tiger 
teams, consisting of several PERI researchers, strive to improve application performance by ap-
plying the full range of PERI capabilities, including not only performance modeling and auto-
mated tuning research but also in-depth familiarity with today’s state-of-the-art performance 
analysis tools.  Tiger team assignments are of a relatively short duration, lasting between six and 
twelve months. As of June 2007, PERI tiger teams are working with two application codes that 
will be part of the 2007 JOULE report: S3D and GTC_s [ref needed]. We have already identified 
significant opportunities for performance improvements for both applications.  Current work is 
focused on providing these improvements through automated tools that support the continuing 
code evolution required by the JOULE criteria.  The GTC tiger team is discussed in more detail 
below. 
 
 

 
Figure 6  GTC_s image of the electrostatic potential in a plasma 

 
We conclude the discussion of PERI application engagement with a more detailed description of 
our Gyrokinetic Turbulence Code (GTC) tiger team.  GTC is a Particle-in-Cell (PIC) code for 
gyrokinetic simulation of fusion plasmas for studying turbulent transport.  Figure 6 is an illustra-
tion of a self-consistently generated electrostatic potential during the non-linear phase of the tur-
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bulence.  GTC’s developers have the long-term performance goal of scaling the new shaped ver-
sion of GTC (GTC_s) to tens of thousands of cores so as to be able to simulate ITER-size plas-
mas.  A core group of PERI researchers at the University of Tennessee and Rice University, sup-
plemented by outside participants at the University of Oregon and Texas A&M University, make 
up the PERI GTC Tiger Team.  This team is studying the performance characteristics of GTC 
and is collaborating with the code developers on performance optimization of GTC_s.  A timing 
profile for a 64-processor run on the ORNL Cray XT3/4 is shown in Figure 7.  Inter-process 
communication is shown to take a minimal amount of time. The PUSHI and CHARGEI routines 
implement a scatter-gather algorithm that is a known performance bottleneck.  Initial hand opti-
mization has improved the performance of the scatter algorithm by around ten percent.  Current 
effort is focused on optimizing the data layout (i.e., the order in which the particles are proc-
essed) to improve the cache and TLB performance of the scatter-gather.  In particular, we are 
investigating a space-filling curve approach to re-ordering the particles in an optimal manner.    

 
 

Figure 7.  Mean time profile for GTC_s on 64 processors on Jaguar (ORNL Cray XT3/4) 

5. Summary 
The Performance Engineering Research Institute was created to focus on the increasingly diffi-
cult problem of achieving high scientific throughput on large-scale computing systems.  These 
performance challenges arise not only from the scale and complexity of leadership class com-
puters, but also from the increasing sophistication of today’s scientific software.   Experience has 
shown that scientists want to focus there programming efforts on discovery and do not want to be 
burdened by the need to constantly refine their codes to maximize performance.  Performance 
tools that they can use themselves are not embraced, but rather viewed as a necessary evil. 
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To alleviate scientists from the burden of performance tuning, PERI has embarked on a research 
program addressing three different aspects of performance tuning: performance modeling of ap-
plications and systems; automatic performance tuning; and application engagement and tuning.  
Our application engagement activities are intended to both help scientists address today’s per-
formance related problems.  We hope that our automatic performance tuning research will lead 
to technology that in the future will significantly reduce (dare we say eliminate?) this burden.  
Performance modeling informs both of these activities. 

While PERI is a new project, as are all SciDAC-2 efforts, it builds on five years of SciDAC-1 
research and decades of prior art.  We believe that PARI is off to a good start, and that its inves-
tigators have already made contributions to SciDAC-2 and to DOE’s 2007 Joule codes.  We con-
fidently look forward to an era of Petascale computing in which scientific codes migrate amongst 
a variety of leadership class computing systems without their developers being overly burdened 
by the need to continually refine them so as to achieve acceptable levels of throughput. 
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